Cho tam giác ABC nhọn, đường cao AH, CF. Gọi D và E lần lượt đối xứng với H qua AB và AC. K đối xứng với H qua phân giác của góc A 1) Chứng minh tam giác ADE cân. 2) Chứng minh AK vuông góc với EF 3) Chứng minh ba điểm D,F,E thẳng hàng
Cho tam giác ABC vuông tại A với đường trung tuyển AM. Kẻ MD vuông góc với AB ( D thuộc AB), ME vuông góc với AC ( E thuộc AC ).
a. Chứng minh tứ giác ADME là hcn
b. Kẻ đường cao AH của tam giác ABC. Lấy điểm F đối xứng với A qua H và K đối xứng B qua H. Chứng minh tứ giác ABFK là hình thoi
c. Chứng minh AK vuông góc CF
d. Tính góc DHE
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH Từ H kẻ HM vuông góc AB HK vuông góc AC (M trên AB,K trên AC
a) chứng minh AH=MK
b)Gọi D và E lần lượt là các điểm đối xứng của H qua AB và A Chứng minh D đối xứng với E qua A
c) chứng minh BD// CE
Cứu với !!!!!
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HE, HF lần lượt vuông góc với AB, AC.
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) I đối xứng H qua E và K đối xứng H qua F . Chứng minh ba điểm I , A , K thẳng hàng.
cho tam giác abc nhọn ( ab< ac) , các đường cao ad , be ,cf của tam giác abc cắt nhau tại h
a) chứng minh ae . ac = af. ab và tam giác abc dồng dạng với tam giác aef
b) gọi k là điểm đối xứng với h qua m của bc chứng minh ak vuông góc với ef
c) gọi n là giao điểm cảu bc và ef chứng minh 1/nb +1/nc =2/nd
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho hình chữ nhật ABDC (AB<AC) có AH là đường cao của tam giác ABC. Lấy điểm E đối xứng với A qua H. Gọi M và N lần lượt là hình chiếu của BD và CD lên điểm E.
Chứng minh ba điểm H, M, N thẳng hàng.Gọi K và P lần lượt là trung điểm của CH và BD. Đường thẳng vuông góc với AK tại K cắt AC tại Q. Chứng minh ba điểm K, Q, P thẳng hàng.Từ trung điểm L của cạnh BD vẽ LI vuông góc với BC tại I. Gọi F đối xứng D qua C. Đường thẳng vuông góc với DF tại F cắt LI tại O. Chứng minh O cách đều B và F.
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM.Gọi D là TRung điểm AB, lấy điểm E đối xứng với M qua D.
a) Chứng minh: M và E đối xứng với nhau qua AB.
b) Chứng minh: AMBE là hình thoi.
c) Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc AM.
d) Gọi S là điểm đổi xứng với H qua K. Chứng minh E, S, B thẳng hàng.
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM.Gọi D là TRung điểm AB, lấy điểm E đối xứng với M qua D.
a) Chứng minh: M và E đối xứng với nhau qua AB.
b) Chứng minh: AMBE là hình thoi.
c) Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc AM.
d) Gọi S là điểm đổi xứng với H qua K. Chứng minh E, S, B thẳng hàng.
Cho tam giác ABC có góc A = 70. Đường cao AH. Gọi D, E theo thứ tự là các điểm đối xứng với của H qua AB và AC. Đường thẳng DE cắt AB, AC lần lượt tại M, N.
a) Chứng minh tam giác ADE cân
b) Tính góc ADE
c) Chứng minh AH là phân giác góc MHN
d) Chứng minh 3 đường thẳng BN, CM, AH đồng quy