Ôn tập: Tam giác đồng dạng

TP

Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a) CM : \(\Delta\)AEB và ​\(\Delta AFC\) đồng dạng và AF.AB = AE.AC
b) CM : góc BAD = góc BEF
c) Gọi AI là tia phân giác của góc BAC, tia AI cắt FE tại O. CM : IB.OF = IC.OE​

NT
15 tháng 4 2021 lúc 21:34

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB\cdot AF=AC\cdot AE\)(đpcm)

Bình luận (0)
NT
15 tháng 4 2021 lúc 21:37

b)Sửa đề: \(\widehat{BAD}=\widehat{BED}\)

Xét tứ giác BDEA có 

\(\widehat{BEA}=\widehat{BDA}\left(=90^0\right)\)

\(\widehat{BEA}\) và \(\widehat{BDA}\) là hai góc cùng nhìn cạnh BA

Do đó: BDEA là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay \(\widehat{BAD}=\widehat{BED}\)(hai góc cùng nhìn cạnh BD)

Bình luận (1)
NT
15 tháng 4 2021 lúc 21:37

A B C E F D H

a, Xét tam giác AEB và tam giác AFC ta có : 

^AEB = ^AFC = 900

^A chung 

Vậy tam giác AEB ~ tam giác AFC (g.g)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow AE.AC=AF.AB\)

 

Bình luận (0)

Các câu hỏi tương tự
AV
Xem chi tiết
VB
Xem chi tiết
NL
Xem chi tiết
TQ
Xem chi tiết
HA
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết