Cho tam giác ABC nhọn (AB<AC) có hai đường cao BD VÀ CE cắt nhau tại H.
a) chứng minh tam giác ABD đồng dạng tam giác ACE và AExAB=ADxAC
b) chứng minh tam giác ABC đồng dạng tam giác ADE
c) đường phân giác kẻ từ A của tam giác ABC cắt DE và BC lần lượt tại M và N. Giả sử AD=1/2AB. Chứng minh M là trung điểm AN
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xet ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC