NA

Cho tam giác ABC có M (4;0), N(5;2), P(2;3) lần lượt là trung điểm AB, AC, BC

a) tìm tọa độ các điểm A, B, C

b) tính đọ dài đoạn thẳng AP

c) tìm các điểm đối xứng với A qua Ox, Oy

d) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC 

e) Tìm điểm E thuộc Ox sao cho E, N, P thẳng hàng 

giúp em với ạ ❤️

NT
11 tháng 12 2023 lúc 22:49

a: M(4;0) là trung điểm của AB

=>\(\left\{{}\begin{matrix}x_A+x_B=2\cdot4=8\\y_A+y_B=2\cdot0=0\end{matrix}\right.\)

N(5;2) là trung điểm của AC 

=>\(\left\{{}\begin{matrix}x_A+x_C=2\cdot5=10\\y_A+y_C=2\cdot2=4\end{matrix}\right.\)

P(2;3) là trung điểm của BC

=>\(\left\{{}\begin{matrix}x_B+x_C=2\cdot2=4\\y_B+y_C=2\cdot3=6\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_A+x_B=8\\x_A+x_C=10\\x_B+x_C=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_B-x_C=8-10=-2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_B=-2+4=2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_B=\dfrac{2}{2}=1\\x_C=4-1=3\\x_A=10-3=7\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_A+y_B=0\\y_A+y_C=4\\y_B+y_C=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y_B-y_C=-4\\y_B+y_C=6\\y_A+y_B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y_B=2\\y_B+y_C=6\\y_A=-y_B\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y_B=1\\y_C=6-1=5\\y_A=-1\end{matrix}\right.\)

Vậy: A(7;-1);B(1;1); C(3;5)

b: A(7;-1); P(2;3)

\(AP=\sqrt{\left(2-7\right)^2+\left(3+1\right)^2}=\sqrt{\left(-5\right)^2+4^2}=\sqrt{41}\)

c: A(7;-1)

Tọa độ điểm đối xứng với A qua trục Ox là:

\(\left\{{}\begin{matrix}x=x_A=7\\y=-y_A=1\end{matrix}\right.\)

Tọa độ điểm đối xứng với A qua trục Oy là:

\(\left\{{}\begin{matrix}x=-x_A=-7\\y=y_A=-1\end{matrix}\right.\)

e: E thuộc Ox nên E(x;0)

N(5;2);P(2;3); E(x;0)

\(\overrightarrow{NP}=\left(-3;1\right);\overrightarrow{NE}=\left(x-5;-2\right)\)

Để N,P,E thẳng hàng thì \(\dfrac{x-5}{-3}=\dfrac{-2}{1}\)

=>x-5=6

=>x=11

Vậy: E(11;0)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
31
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
WT
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết