PB

Cho tam giác nhọn ABC nội tiếp đường tròn (O) với AB<AC .Đường phân giác của góc B A C ^  cắt (O) tại điểm D khác A 

Gọi M là trung điểm của AD và E là điểm đối xứng với D qua tâm O.

Giả sử đường tròn ngoại tiếp tam giác ABM cắt đoạn thẳng AC tại điểm F khácA

2). Chứng minh rằng È vuông góc với AC

CT
30 tháng 1 2018 lúc 4:02

2). Từ AD là phân giác  B A C ^  suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.

Từ 1). Δ B D M ∽ Δ B C F , ta có  D M C F = B D B C .

Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E  (3).

 

Ta lại có góc nội tiếp  A D E ^ = F C E ^  (4).

Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C  

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
IY
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết