PC/PD-AC/BC
=MC/ME-AD/DB
=MA/ME-AD/DB
\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)
=1
PC/PD-AC/BC
=MC/ME-AD/DB
=MA/ME-AD/DB
\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)
=1
Cho tam giác ABC có đường trung tuyến BM và phân giác CD cắt nhau tại H. Chứng minh HC/HD- AC/BC= 1
Cho tam giác ABC có phân giác CD cắt AB tại D.Đường trung tuyến BK .Chứng minh PC/PD-AC/BC=1
Cho tam giác ABC ,trung tuyến BM cắt phân giác CD tại P.CMR \(\frac{PC}{PD}\)-\(\frac{AC}{BC}\)=1
cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
Cho tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại trọng tâm G. Lấy điểm M thuộc đoạn thẳng BD và N thuộc đoạn thẳng CD sao cho GM // AB, CN // AC. Tính BM/BC=NC/BC rồi chứng minh BM=MN=NC
Cho tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại trọng tâm G. Lấy điểm M thuộc đoạn thẳng BD và N thuộc đoạn thẳng CD sao cho GM//AB, CN//AC. Tính BM/BC, NC/BC rồi chứng minh BM=MN=NC
Cho tam giác ABC có BC < AB, đường phân giác BD và đường trung tuyến
BM ( M, D thuộc AC). Đường thẳng qua C vuông góc với BD tại E cắt BM, BA lần lược tại I và K. Chứng minh rằng ID sng song với BC.
1. Cho ∆ABC có BC<BA, đường trung tuyến BD, đường phân giác BE. Đường thẳng qua C vuông góc với BE ở F và cắt BD ở G. Chứng minh DF đi qua trung điểm của GE.
2. Cho ∆ABC có đường trung tuyến BM và đường phân giác CD cắt nhau tại K sao cho KB=KC. Biết góc BAC = 105°. Tính góc ABC và góc ACD
Cho tam giác ABC vuông tại A, trung tuyến BM. Phân giác góc BMA và BMC lần lượt cắt AB, BC tại D, E. Biết AB=8cm, AM=6cm
a, Tính độ dài đoạn thẳng BM, BD
b, chứng minh DE//AC