MJ

Cho tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại trọng tâm G. Lấy điểm M thuộc đoạn thẳng BD và N thuộc đoạn thẳng CD sao cho GM // AB, CN // AC. Tính BM/BC=NC/BC rồi chứng minh BM=MN=NC

MN
12 tháng 7 2021 lúc 14:56

Giải thích các bước giải:

 Do G là trọng tâm ΔABC 

\(\to \frac{{GC}}{{CE}} = \frac{2}{3};\frac{{BG}}{{BD}} = \frac{2}{3}\)

Mà GM//AB; GN//AC hay GM//BE; GN//DC

Theo định lí ta-lét trong ΔCBE và BDC

\(\begin{array}{l} \to \frac{{GC}}{{CE}} = \frac{{CM}}{{CB}} = \frac{2}{3};\frac{{BG}}{{BD}} = \frac{{BN}}{{BC}} = \frac{2}{3}\\ \to \frac{{CM}}{{BC}} = \frac{{BN}}{{BC}} = \frac{2}{3} \to \frac{{BM}}{{BC}} = \frac{{CN}}{{BC}} = \frac{1}{3}\\ \to CM = BN;BM = CN\\ \to BM = MN = CN \end{array}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NA
Xem chi tiết
DL
Xem chi tiết
VT
Xem chi tiết
BB
Xem chi tiết
LT
Xem chi tiết
TA
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết