Ôn tập Tam giác

H24

Cho tam giác ABC có ba góc nhọn , đường cao AI , Lấy điểm D và E sao cho AB và AC là đường trung trực của HD và HE. DE cắt AB và AC lần lượt tại I và K. Chứng minh a ) AD = AE b ) DAE = 2BAC C ) tam giác ADI = tam giác AHI d ) HA là phân giác của góc IHK

NT
10 tháng 2 2021 lúc 20:18

a) Ta có: AB là đường trung trực của HD(gt)

⇔A nằm trên đường trung trực của HD

⇔AD=AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AC là đường trung trực của HE(gt)

⇔A nằm trên đường trung trực của HE

⇔AE=AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AE=AD(đpcm)

b) Xét ΔADH có AD=AH(cmt)

nên ΔADH cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADH cân tại A(cmt)

mà AB là đường trung trực ứng với cạnh đáy HD(gt)

nên AB là đường phân giác ứng với cạnh HD(Định lí tam giác cân)

⇔AB là tia phân giác của \(\widehat{DAH}\)

\(\widehat{DAH}=2\cdot\widehat{BAH}\)

Xét ΔAHE có AH=AE(cmt)

nên ΔAHE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAHE cân tại A(cmt)

mà AC là đường trung trực ứng với cạnh đáy HE(gt)

nên AC là đường phân giác ứng với cạnh HE(Định lí tam giác cân)

⇔AC là tia phân giác của \(\widehat{HAE}\)

\(\widehat{HAE}=2\cdot\widehat{CAH}\)

Ta có: \(\widehat{DAH}+\widehat{EAH}=\widehat{DAE}\)(tia AH nằm giữa hai tia AD,AE)

mà \(\widehat{DAH}=2\cdot\widehat{BAH}\)(cmt)

và \(\widehat{HAE}=2\cdot\widehat{CAH}\)(cmt)

nên \(2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{DAE}\)

\(\Leftrightarrow\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

mà \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)

nên \(\widehat{DAE}=2\cdot\widehat{BAC}\)(đpcm)

c) Ta có: AB là đường trung trực của HD(gt)

⇔AB vuông góc với HD tại trung điểm của HD

mà AB cắt HD tại I(gt)

nên AI⊥HD tại I và I là trung điểm của DH

Xét ΔADI vuông tại I và ΔAHI vuông tại I có

AD=AH(cmt)

AI chung

Do đó: ΔADI=ΔAHI(cạnh huyền-cạnh góc vuông)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NP
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
CH
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
TR
Xem chi tiết
LM
Xem chi tiết