Cho tam giác ABC có AB=AC. Trên tia đối của tia BC lấy điểm M , trên tia đối của
tia CB lấy điểm N sao cho BM=CN. Từ B hạ BE vuông góc với AM (E thuộc AM), từ C hạ CF vuông góc với AN (F thuộc AN). Chứng minh rằng:
a) AM = AN.
b) BE=CF.
c) tam giác EBM = tam giác FCN .
d) EB và FC kéo dài cắt nhau tại O . Chứng minh AO là tia phân giác của góc MAN .
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN