Ôn tập Tam giác

PC

Cho tam giác ABC có AB=AC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm D sao cho AM=MD a)Chứng mình tâm giác AMB = tam giác DMC b)Chứng minh AB//DC Chứng minh CB là tia phân giác của góc ACD

NT
3 tháng 12 2023 lúc 19:21

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

XétΔCAD có

CM là đường cao

CM là đường trung tuyến

Do đó: ΔCAD cân tại C

Ta có: ΔCAD cân tại C

mà CM là đường cao

nên CM là phân giác của góc ACD

=>CB là phân giác của góc ACD

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SD
Xem chi tiết
IG
Xem chi tiết
H7
Xem chi tiết
7K
Xem chi tiết
NA
Xem chi tiết
BT
Xem chi tiết
NP
Xem chi tiết
TT
Xem chi tiết