Ôn tập Tam giác

SD

Bài 5: Cho tam giác ABC có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. a) Chứng minh:tam giác  AMB = tam giác DMC

b) Chứng minh: AB + AC > 2 AM

TT
9 tháng 3 2022 lúc 9:39

a) Xét tam giác AMB và tam giác DMC:

AM = DM (gt).

BM = CM (M là trung điểm của cạnh BC).

\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).

\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Xét tam giác ABD và tam giác DCA:

AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)

AD chung.

\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)

\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)

Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)

Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)

\(\Rightarrow AB+AC>2AM.\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
PC
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
BU
Xem chi tiết
TT
Xem chi tiết
TQ
Xem chi tiết
IG
Xem chi tiết
GB
Xem chi tiết