TỚ TRÌNH BÀY KO ĐẸP MONG CẬU thông cảm
a) có AD là tia p/g của góc ABC => \(\frac{BD}{DC}\)=\(\frac{AB}{AC}\)=> \(\frac{BD}{DC}\)=\(\frac{3}{5}\)<=>\(\frac{BD}{3}\)=\(\frac{DC}{5}\). Ap dụng t/c của dãy tỉ số bằng nhau ta có :\(\frac{BD}{3}\)=\(\frac{DC}{5}\)<=>\(\frac{BD+DC}{3+5}\)=\(\frac{12}{8}\)=\(\frac{3}{2}\)=> BD =4,5
B) △ADB ∼△ACI (g.g) do có góc ADB =^ACI (gt) và có ^A1=^A2( 2 góc tia p/g ,bạn có thể đọc hẳn tên góc)
c) có 2 △trên đồng dạng ( chứng minh câu b) =>\(\frac{AD}{AC}\)=\(\frac{AB}{AI}\)=> AD. AI =AB. AC(1)
XÉT △DBA và △DIC , CÓ : ^BDA =^IDC ( 2 góc đối đỉnh) và ^DBC=^DIC( do △ADB ∼△ACI) => △DBA ∼△DIC (g.g) => \(\frac{AD}{CD}\)=\(\frac{BD}{DI}\)=> AD.DI =BD.CD(2). Ta lấy biểu thức (1) - b/t (2) sẽ ra điều phải c/m như sau :( CHÚ Ý VT1 -VT2 VP cũng như vậy)
AD.AI - AD.DI =AB.DC -BD .CD <=> AD( AI-DI) =AB.DC-BD.CD<=>\(AD^2\)=AB.DC- BD.CD