Bài 2: Định lý đảo và hệ quả của định lý Talet

DH

Cho tam giác ABC có AB = 18 cm, AC = 12 cm, BC = 9 cm. Trên tia đối của tia CB lấy điểm D sao cho CD = 3 cm. Qua D kẻ đường thẳng song song với AB cắt tia AC tại E. Gọi F là giao điểm của AD và BE. Tính: a) Độ dài CE, DE

NT
6 tháng 12 2023 lúc 13:15

Xét ΔCAB và ΔCED có

\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)

\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)

Do đó: ΔCAB đồng dạng với ΔCED

=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)

=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)

=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
VM
Xem chi tiết
TN
Xem chi tiết
J3
Xem chi tiết
PT
Xem chi tiết
KD
Xem chi tiết
HN
Xem chi tiết
TD
Xem chi tiết
TT
Xem chi tiết
LV
Xem chi tiết