HT

Cho tam giác ABC cân tại A,kẻ hai đường cao BM và CN cắt nhau tại H.Chứng minh rằng:

1)Tam giác ABM=tam giác ACN

2)Tam giác BMC=Tam giác CNB

3)AMN là tam giác gì

4) MN song song với BC

KR
9 tháng 6 2023 lúc 23:45

`@` `\text {Ans}`

`\downarrow`

`1)`

Vì `\Delta ABC` cân tại A.

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `\Delta ABM` và `\Delta ACN`:

`\text {AB = AC}`

$\widehat {A} \text { chung}$

$\widehat {ANC} = \widehat {AMB} (=90^0)$

`=> \Delta ABM = \Delta ACN (ch-gn)`

`2)`

Xét `2 \Delta` vuông `BMC` và `CNB`:

$\widehat {B} = \widehat {C}$

`\text {BC chung}`

`=> \Delta BMC = \Delta CNB (ch-gn)`

`3)`

Vì `\Delta BMC = \Delta CNB (b)`

`-> \text {BN = CM (2 cạnh tương ứng)}`

Ta có: \(\left\{{}\begin{matrix}\text{AB = AN + NB}\\\text{AC = AM + MC}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BN = CM}\end{matrix}\right.\)

`-> \text {AM = AN}`

Xét `\Delta AMN`:

`\text {AM = AN}`

`-> \Delta AMN` cân tại A.

`4)`

Kẻ đường cao AI

Vì AI đi qua MN

`-> \text {AI} \bot \text {MN}`

Ta có: \(\left\{{}\begin{matrix}\text{AI }\bot\text{ MN}\\\text{AI }\bot\text{ BC}\end{matrix}\right.\)

`@` Theo tiên đề euclid

`-> \text {MN // BC}`

Hoặc bạn có thể giải cách này

Vì `\Delta AMN` cân tại A

\(\rightarrow\widehat{\text{AMN}}=\widehat{\text{ANM}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(1)`

Vì `\Delta ABC` cân tại A

\(\rightarrow\widehat{\text{ABC}}=\widehat{\text{ACB}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(2)`

Từ `(1)` và `(2)`

`->` \(\widehat{\text{ABC}}=\widehat{\text{ANM}}\)

Mà `2` góc này ở vị trí sole trong

`-> \text {MN // BC (t/c 2 đt' //).}`

loading...

Bình luận (2)
NT
9 tháng 6 2023 lúc 19:38

1: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

góc BAM chung

=>ΔABM=ΔACN

2: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có

BC chung

góc NBC=góc MCB

=>ΔNBC=ΔMCB

3: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

4: AM/AC=AN/AB

=>MN//BC

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
HN
Xem chi tiết
CD
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
DL
Xem chi tiết
NA
Xem chi tiết