Cho tam giác ABC cân tại A. Vẽ hai đường cao BE, CF, chúng cắt
nhau tại H
a) Chứng minh rằng 4 điểm B, F, E, C cùng thuộc một đường tròn và xác định
tâm của đường tròn đó
b) Gọi I, K lần lượt là hai điểm trên BH và CH sao cho HE=HI, HF=HK. Chứng
minh E, F, I, K cùng thuộc một đường tròn
c) Gọi M là trung điểm của AH. Tìm điều kiện của tam giác ABC để điểm M
thuộc đường tròn đi qua 4 điểm E, F, I, K
a: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc một đường tròn
Tâm là trung điểm của BC