Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy M , trên tia đối của CB lấy N sao cho BM = CN
a) CM : tam giác ABM= tam giác ACN
b) Kẻ BH vuông góc với AM tại H, CK vuông góc với AN tại K
CM: BH=CK
c) CM: HK//BC
d ) Gọi O là giao điểm của HB và KC. Chứng minh tam giác OBC cân.
Làm nhanh giúp mình nhaa. Cám ơn nhìuu<33
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó:ΔABM=ΔACN
b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có
MB=NC
\(\widehat{M}=\widehat{N}\)
Do đó: ΔHMB=ΔKNC
Suy ra: BH=CK
c: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
BH=CK
Do đó:ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔAMN có AH/AM=AK/AN
nên HK//MN
hay HK//BC
d: Ta có: ΔHBM=ΔKCN
nên \(\widehat{HBM}=\widehat{KCN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O