Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ \(BH\perp AM\left(H\in AM\right)\), kẻ \(CK\perp AN\left(K\in AN\right)\). Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Khi \(\widehat{BAC}=60^0\) và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC ?
a) ∆ABC cân, suy ra ˆB1=ˆC1B1^=C1^
⇒ˆABM=ˆACN⇒ABM^=ACN^
∆ABM và ∆CAN có:
AB = AC (gt)
ˆABM=ˆACNABM^=ACN^
BM = ON (gt)
Suy ra ˆM=ˆNM^=N^
=>∆AMN là tam giác cân ở A.
b) Hai tam giác vuông ∆BHM và ∆CKN có :
BM = CN (gt)
ˆM=ˆNM^=N^ (CM từ câu a)
Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)
Suy ra BH = CK.
c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)
Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).
Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK
Vậy AH = AK.
d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2B2^=C2^
Mà ˆB2=ˆB3;ˆC2=ˆC3B2^=B3^;C2^=C3^ (đối đỉnh)
Nên ˆB3=ˆC3B3^=C3^ .
Vậy ∆OBC là tam giác cân.
e) Khi ˆBAC=600BAC^=600 và BM = CN = BC.
+Tam giác cân ABC có ˆBAC=600BAC^=600 nên là tam giác đều.
Do đó: AB = BC = AC = BM = CN
ˆABM=ˆACN=1200ABM^=ACN^=1200 (cùng bù với 600)
∆ABM cân ở B nên ˆM=ˆBAM=1800−12002=300M^=BAM^=1800−12002=300 .
Suy ra ˆANM=ˆAMN=300ANM^=AMN^=300 .
Và ˆMAN=1800−(ˆAMN+ˆANM)=1800−2.300=1200MAN^=1800−(AMN^+ANM^)=1800−2.300=1200
Vậy ∆AMN có ˆM=ˆN=300;ˆA=1200.M^=N^=300;A^=1200.
+∆BHM có: ˆM=300M^=300 nên ˆB2=600B2^=600 (hai góc phụ nhau)
Suy ra ˆB3=600B3^=600
Tương tự ˆC3=600C3^=600
Tam giác OBC có ˆB3=ˆC3=600B3^=C3^=600 nên tam giác OBC là tam giác đều.
(Tam giác cân có một góc bằng 600 nên là tam giác đều).
a) ∆ABC cân, suy ra ˆB1=ˆC1
⇒ˆABM=ˆACN
∆ABM và ∆CAN có:
AB = AC (gt)
ˆABM=ˆACN
BM = ON (gt)
Suy ra ˆM=ˆN
=>∆AMN là tam giác cân ở A.
b) Hai tam giác vuông ∆BHM và ∆CKN có :
BM = CN (gt)
ˆM=ˆN (CM từ câu a)
Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)
Suy ra BH = CK.
c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)
Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).
Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK
Vậy AH = AK.
d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2
Mà ˆB2=ˆB3;ˆC2=ˆC3 (đối đỉnh)
Nên ˆB3=ˆC3
Vậy ∆OBC là tam giác cân.
e) Khi ˆBAC=60o và BM = CN = BC.
+Tam giác cân ABC có ˆBAC=60o nên là tam giác đều.
Do đó: AB = BC = AC = BM = CN
ˆABM=ˆACN=120o (cùng bù với 600)
∆ABM cân ở B nên ˆM=ˆBAM=180o−120o / 2=30o
Suy ra góc ANM = góc AMN=30o
Và góc MAN=1800−(góc AMN+góc ANM)=1800−2.30o=120o
Vậy ∆AMN có góc M = góc N=30o ; góc A=120o
+∆BHM có: góc M=30o nên góc B2 = 60o (hai góc phụ nhau)
Suy ra góc B3=60o
Tương tự góc C3=60o
Tam giác OBC có góc B3 = góc C3=60o nên tam giác OBC là tam giác đều.
(Tam giác cân có một góc bằng 600 nên là tam giác đều).