DG

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a)CMR:tam giác AMN cân
b)Kẻ BE vuông góc với AM, CF vuông góc với AN. CMR: tam giác BME=tam giác CNF
c)EB và FC cắt nhau tại O. CMR: AO là tia phân giác của góc MAN
d)Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, cắt nhau tại H. CMR:A, O, H thẳng hàng

NT
7 tháng 3 2022 lúc 0:05

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔBEM vuông tại E và ΔCFN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó:ΔBEM=ΔCFN

c: Ta có: ΔBEM=ΔCFN

nên \(\widehat{BEM}=\widehat{CFN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Ta có: ΔAMN cân tại A

mà AO là đường cao

nên AO là phân giác của góc MAN

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PT
Xem chi tiết
TL
Xem chi tiết
TD
Xem chi tiết
PA
Xem chi tiết
TL
Xem chi tiết
NK
Xem chi tiết
QN
Xem chi tiết
NL
Xem chi tiết