LH

Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho BD = CE. Gọi H là giao điểm của BE và CD, I là giao điểm của AH và BC ( I thuộc BC). CMR:
a)BE = CD.
b) tam giác HBD = tam giác HCE.

c) AH là tia phân giác của góc A.
d)AH vuông góc với BC tại I.

e)DE // BC.
f)Tìm vị trí điểm E trên cạnh AC sao cho ID vuông góc với IE
mn ơi giúp mik , ai làm đúng mik tích ạ

 

NT
23 tháng 2 2022 lúc 19:05

a: Xét ΔABE và ΔACD có 

AB=AC

\(\widehat{BAE}\) cung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có

DB=EC

DC=EB

BC chung

Do đó: ΔDBC=ΔECB

Xét ΔHDB và ΔHEC có

\(\widehat{HDB}=\widehat{HEC}\)

DB=EC

\(\widehat{HBD}=\widehat{HCE}\)

Do đó:ΔHBD=ΔHCE

c: Ta có: ΔHBD=ΔHCE

nên HB=HC

Xét ΔABH và ΔACH có

AB=AC
AH chung

BH=CH

DO đó ΔABH=ΔAHC

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

d:Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

e: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Bình luận (0)

Các câu hỏi tương tự
CC
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết