Ôn tập Tam giác

NT

cho tam giác abc cân tại a. kẻ bh vuông góc với ac, ce vuông góc với ab ( d thuộc ac và e thuộc ab ). o là giao điểm của bd và ce. 

a) chứng minh tam giác adb = tam giác aec.

b) chứng minh rằng tam giác boc cân.

c) chứng minh rằng ed // bc.

d) gọi m trung điểm của bc. chứng minh em = 1/2 bc

NT
27 tháng 3 2021 lúc 21:07

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)

Bình luận (0)
NH
28 tháng 3 2021 lúc 22:18

b. Ta có : AB = BE + EA

               CA = CD + DA

MÀ : AB=CA ( TAM GIÁC ABC CÂN TẠI A ) 

        EA=DA ( ΔADB=ΔAEC)

⇒BE=CD 

XÉT ΔOBE VÀ ΔOCD 

CÓ : \(\widehat{E}=\widehat{D}\) (GT)

BE=CD (CMT)

\(\widehat{EBO}=\widehat{DCO}\) (ΔADB=ΔAEC)

⇒ΔOBE = ΔOCD (G-C-G)

⇒OB = OC (2 CẠNH TƯƠNG ỨNG)

⇒ΔBOC CÂN TẠI O

 

Bình luận (0)
NH
28 tháng 3 2021 lúc 23:11

TA CÓ : \(\widehat{A}+\widehat{B}+\widehat{C}=180\)

\(\widehat{A}+\widehat{2B}\)=180

\(\widehat{2B}=180-\widehat{A}\)

\(\widehat{B}\)=180-\(\widehat{A}\) :2

TA CÓ : \(\widehat{A}+\widehat{E}+\widehat{D}\)=180

\(\widehat{A}+\widehat{2E}\) = 180

\(\widehat{2E}\)=180-\(\widehat{A}\)

\(\widehat{E}\)=180-\(\widehat{A}\):2

⇒ \(\widehat{AED}=\widehat{ABC}\)

⇒ED // BC

Bình luận (1)

Các câu hỏi tương tự
PN
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
CH
Xem chi tiết
N3
Xem chi tiết
TL
Xem chi tiết
TT
Xem chi tiết
TL
Xem chi tiết