a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)
b. Ta có : AB = BE + EA
CA = CD + DA
MÀ : AB=CA ( TAM GIÁC ABC CÂN TẠI A )
EA=DA ( ΔADB=ΔAEC)
⇒BE=CD
XÉT ΔOBE VÀ ΔOCD
CÓ : \(\widehat{E}=\widehat{D}\) (GT)
BE=CD (CMT)
\(\widehat{EBO}=\widehat{DCO}\) (ΔADB=ΔAEC)
⇒ΔOBE = ΔOCD (G-C-G)
⇒OB = OC (2 CẠNH TƯƠNG ỨNG)
⇒ΔBOC CÂN TẠI O
TA CÓ : \(\widehat{A}+\widehat{B}+\widehat{C}=180\)
⇒\(\widehat{A}+\widehat{2B}\)=180
⇒\(\widehat{2B}=180-\widehat{A}\)
⇒\(\widehat{B}\)=180-\(\widehat{A}\) :2
TA CÓ : \(\widehat{A}+\widehat{E}+\widehat{D}\)=180
⇒\(\widehat{A}+\widehat{2E}\) = 180
⇒\(\widehat{2E}\)=180-\(\widehat{A}\)
⇒\(\widehat{E}\)=180-\(\widehat{A}\):2
⇒ \(\widehat{AED}=\widehat{ABC}\)
⇒ED // BC