NT

Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB
(E thuộc AC,  F thuộc AB )
a/ Chứng minh: tam giác ABE = tam giác ACF .
b/ Gọi I là giao điểm của BE và CF. Chứng minh: tam giác BIC là tam giác cân.
c/ Gọi M là trung điểm của BC. Chứng minh: 3 điểm A, I, M thẳng hàng

Vẽ hình luôn cho mik nha, cảm ơn rất nhiều 
 

NT
1 tháng 3 2022 lúc 21:55

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Ta có: ΔABE=ΔACF

nên BE=CF

Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

CF=BE

Do đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)

ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
DA
Xem chi tiết
BD
Xem chi tiết
LA
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
KV
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết