HN

Cho tam giác ABC cân tại A. Gọi E, F và D lần lượt là trung điểm của AB, BC, AC. Biết BCDE là hình thang, BEDF là hình bình hành. Chứng minh ADFE là hình thoi.

IV
14 tháng 11 2021 lúc 20:48

Vì BEDF là hình bình hành (gt)

=> BE // DF , BE = DF

mà BE = AE (E là trung điểm AB)

=> AE = DF

Xét tứ giác ADFE có : AE = FD (cmt)

                                    AE // FD (BE // FD mà E ∈ AB)

=> Tứ giác ADFE là hình bình hành

Vì tam giác ABC cân tại A có F là trung điểm BC

=> AF là đường cao của tam giác ABC

=> AF ⊥ BC (1)

Vì tứ giác BCDE là hình thang (gt)

=> BC // DE (2)

Từ (1) và (2) => AF ⊥ ED (từ vuông góc đến song song) 

Xét hình bình hành ADFE có : AF ⊥ ED mà AF và ED là 2 đường chéo

=> hình bình hành ADFE là hình thoi (DHNB)

 

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
0A
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
PH
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
HN
Xem chi tiết