G4

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABC = tam giác ACN , từ đó suy ra BM=CN

NT
14 tháng 5 2023 lúc 9:11

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Bình luận (0)
KR
14 tháng 5 2023 lúc 9:26

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...

Bình luận (7)

Các câu hỏi tương tự
PH
Xem chi tiết
PH
Xem chi tiết
VH
Xem chi tiết
NH
Xem chi tiết
TA
Xem chi tiết
MD
Xem chi tiết
MD
Xem chi tiết
PB
Xem chi tiết
MD
Xem chi tiết