BN

Cho tam giác ABC cân ở A. Hai tia phân giác của góc ABC và của góc ACB cắt nhau tại I. Chứng minh:
a, Tam giác BIC cân tại I
b, AI là đường trung trực của BC

NT
6 tháng 8 2023 lúc 17:30

a: góc IBC=góc ABC/2

góc ICB=góc ACB/2

mà góc ABC=góc ACB

nên góc IBC=góc ICB

=>ΔICB cân tại I

b: AB=AC

IB=IC

=>AI là trung trực của BC

Bình luận (0)
KS
6 tháng 8 2023 lúc 17:36

`a)` 

có : BI là phan giác của góc `ABC`

`=> góc ABI = góc IBC = 1/2 góc ABC`

CI là phân giác của góc `ACB`

`=> góc ACI = góc ICB = 1/2 góc ACB`

Mà `góc ABC = góc ACB`(tam giác `ABC` cân)

`=> góc IBC = góc ICB`

`=>` tam giác ` BIC` cân

`b)`

Có :

tam giác `ABC` cân 

`=> AB = AC `

`=> B` thuộc đường trung trực của BC (1)

lại có tam giác `BIC` cân 

`=> BI = IC`

`=> I` thuộc đường trung trực của BC (2)

Từ `(1),(2) => AI` là đường trung trực của BC

Bình luận (0)
NK
3 tháng 7 2024 lúc 20:37

a: góc IBC=góc ABC/2

góc ICB=góc ACB/2

mà góc ABC=góc ACB

nên góc IBC=góc ICB

=>ΔICB cân tại I

b: AB=AC

IB=IC

=>AI là trung trực của BC

Bình luận (0)

Các câu hỏi tương tự
BN
Xem chi tiết
HA
Xem chi tiết
LH
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NJ
Xem chi tiết
YN
Xem chi tiết