H24

cho tam giac abc cân a, m là trung điểm của bc mc vuông góc với ab, mf vuông góc với ac chứng minh me=mf và am là trung trực của ef

KR
20 tháng 4 2023 lúc 18:28

Mình xin phép sửa đề:

Cho tam giac ABC cân tại A, M là trung điểm của BC, ME vuông góc với AB, MF vuông góc với AC. Chứng minh ME = MF và AM là đường trung trực của EF.

\(\text {(1)}\)

Xét Tam giác `ABM` và Tam giác `ACM` có:

`AB = AC (\text {Tam giác ABC cân tại A})`

\(\widehat {B}= \widehat {C}(\text {Tam giác ABC cân tại A})\)

`MB = MC (\text {M là trung điểm của BC})`

`=> \text {Tam giác ABM = Tam giác ACM (c-g-c)}`

`->`\(\widehat {BAM}=\widehat {CAM} (\text {2 góc tương ứng})\)

Xét Tam giác `AEM` và Tam giác `AFM` có:

`\text {AM chung}`

\(\widehat{BAM}=\widehat{CAM} (CMT)\)

\(\widehat{AEM}=\widehat{AFM} (=90^0)\)

`=> \text {Tam giác AEM = Tam giác AFM (ch-gn)}`

`-> ME = MF (2 cạnh tương ứng)`

\(\left(2\right)\) 

Gọi `I` là giao điểm của `AM` và `EF`

C1:

Vì Tam giác `AEM =` Tam giác `AFM (\text {Theo CMT})`

`-> AE = AF (\text {2 cạnh tương ứng})`

Xét Tam giác `AEI` và Tam giác `AFI` có:

`AE = AF (CMT)`

\(\widehat{EAI}=\widehat{FAI} (\text {Theo CMT})\)

`\text {AI chung}`

`=> \text {Tam giác AEI = Tam giác AFI (c-g-c)}`

`-> IE = IF (\text {2 cạnh tương ứng})`

`->`\(\widehat{AIE}=\widehat{AIF} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{AIE}+\widehat{AIF}=180^0\)

`->`\(\widehat{AIE}=\widehat{AIF}=\)`180/2=90^0`

`-> \text {AI} \bot \text {EF}`

\(\text{Ta có: }\left\{{}\begin{matrix}\text{IE = IF }\\\text{AI}\perp\text{EF}\end{matrix}\right.\)

`-> \text {AI là đường trung trực của EF}`

`-> \text {AM là đường trung trực của EF}`

C2 (nếu bạn đã học về tính chất của tam giác cân với các đường Trung Tuyến, Đường Cao, Đường Trung Trực) :

Ta có: 

AM vừa là đường phân giác, vừa là đường trung tuyến

`*` Theo tính chất của tam giác cân

`-> \text {AM là đường trung trực của EF (đpcm)}`

`@`\(\text{dnammv}\)

loading...

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
KD
Xem chi tiết
TT
Xem chi tiết