H24

Cho tam giác A B C có các đường phân giác trong là AD và AB = 35 cm; AC = 50 cm. Biết độ dài cạnh DB, DC (tính theo cm) là số nguyên, tính độ dài lớn nhất của đoạn BC.

 

 

 

 

NL
2 tháng 4 2023 lúc 11:17

Đặt \(\left\{{}\begin{matrix}BD=x\\CD=y\end{matrix}\right.\) với x;y là các số nguyên dương

Áp dụng định lý phân giác:

\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{x}{35}=\dfrac{y}{50}\Rightarrow y=\dfrac{10x}{7}\)

Do \(y\) nguyên và 10;7 nguyên tố cùng nhau \(\Rightarrow x\) chia hết cho7

Mặt khác theo BĐT tam giác:

\(BC< AB+AC\Rightarrow x+y< 85\)

\(\Rightarrow x+\dfrac{10x}{7}< 85\Rightarrow x< 35\)

BC lớn nhất khi x lớn nhất, số nguyên chia hết cho 7 và nhỏ hơn 35 lớn nhất là 28

Vậy \(x_{max}=28\Rightarrow BC_{max}=28+\dfrac{10.28}{7}=68\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
NT
Xem chi tiết
NQ
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết
KH
Xem chi tiết
NT
Xem chi tiết
DL
Xem chi tiết
DT
Xem chi tiết