a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A có AM là đường cao
nên AM là phân giác của góc DAE
a
Theo đề có \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)
Lại có: \(\widehat{ABD}+\widehat{ABC}=\widehat{ACE}+\widehat{ACB}\left(=180^o\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
`AB=AC`
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
`DB=CE`
=> ΔABD = ΔACE
=> `AD=AE` (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
b
Ta có:
`BM=CM`
`DB=CE`
\(\Rightarrow\)`DM=EM`
\(\Rightarrow\)AM là đường trung tuyến của ΔADE
\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)