TS

Cho pt:\(\left\{{}\begin{matrix}x+y=m\\2x-my=0\end{matrix}\right.\)(1)

Tìm m để hệ (1) có nghiệm (x;y) thỏa mãn :x+y=1

 

NT
11 tháng 4 2022 lúc 18:26

\(\left\{{}\begin{matrix}2x+2y=2m\\2x-my=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)y=2m\\x=m-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m}{m+2}\\x=\dfrac{m^2+2m-2m}{m+2}=\dfrac{m^2}{m+2}\end{matrix}\right.\)

Thay vào ta được 

\(\dfrac{m^2+2}{m+2}=1\Leftrightarrow m^2+2=m+2\Leftrightarrow m^2-m=0\Leftrightarrow m=0;m=1\)

 

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết