Bài 6: Hệ thức Vi-et và ứng dụng

TT

Cho pt \(x^2-mx-4=0\)CMR pt có 2 nghiệm phân biệt. Tìm GTLN của biểu thức \(A=\frac{2\left(x_1+x_2\right)+7}{x^2_1+x^2_2}\). Tìm m sao cho 2 nghiệm của pt đều là số nguyên. GIÚP MÌNH NHÉ

NL
8 tháng 11 2019 lúc 23:01

\(ac=-4< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

\(\Rightarrow A=\frac{2\left(x_1+x_2\right)+7}{\left(x_1+x_2\right)^2-2x_1x_2}=\frac{2m+7}{m^2+8}=1+\frac{2m+7}{m^2+8}-1\)

\(A=1+\frac{2m+7-m^2-8}{m^2+8}=1-\frac{\left(m-1\right)^2}{m^2+8}\le1\)

\(\Rightarrow A_{max}=1\) khi \(m=1\)

Để pt có nghiệm nguyên \(\Rightarrow\Delta=m^2+16\) là SCP

\(\Rightarrow m^2+16=k^2\Rightarrow\left(m-k\right)\left(m+k\right)=16\)

Bạn tự giải pt ước số, 16 nhiều ước quá nên làm biếng

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
KV
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
BT
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết