Ta có \(\Delta=\left(m+2\right)^2-4\left(m+8\right)>0\)
<=> \(m^2-28>0\)
<=> \(\orbr{\begin{cases}m>\sqrt{28}\\m< -\sqrt{28}\end{cases}}\)
Áp dụng hệ thức vi-et ta có
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=m+8\end{cases}}\)
=> \(x_1+x_2-x_1x_2+6=0\)
Mà \(x_1^3=x_2\)
=> \(x_1^3+x_1-x_1^4+6=0\)
<=> \(\)\(x_1=2\)
=> m=8(thỏa mãn ĐK)
Vậy m=8