H24

Cho pt:  x2 + (3m + 2)x + 3m + 1 = 0  

Tìm tất cả giá trị của m để pt có 2 nghiệm phân biệt nhỏ hơn 2

H24
17 tháng 4 2021 lúc 21:41

Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)

suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$

Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$

nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với

$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$

$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$

Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$

Vậy $m>-1;m \neq 0$ thỏa mãn đề

Bình luận (0)
NT
17 tháng 4 2021 lúc 21:46

Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)

\(=9m^2+12m+4-12m-4\)

\(=9m^2\ge0\forall m\)

Do đó: Phương trình luôn có 2 nghiệm

Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)

hay \(m\ne0\)

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)

Kết hợp ĐKXĐ, ta được: -3<m<-2

Vậy: -3<m<-2

Bình luận (1)

Các câu hỏi tương tự
BM
Xem chi tiết
DT
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
YY
Xem chi tiết
PT
Xem chi tiết
NS
Xem chi tiết
MN
Xem chi tiết
QM
Xem chi tiết