H24

cho pt (x2 -2x -3) (x2 -2x + 3m+3)=0

a/ giải pt khi m=0

b/tìm m để pt có 4 nghiệm phân biệt

c/ tìm min A=x1.x2.x3.x4 với x1, x2, x3, x4 là 4 nghiệm của pt trên

AH
28 tháng 2 2017 lúc 21:06

Lời giải:

a) Với \(m=0\) phương trình trở thành:

\((x^2-2x-3)(x^2-2x+3)=0\Leftrightarrow (x-3)(x+1)(x^2-2x+3)=0\)

\(\Rightarrow\left[\begin{matrix}x-3=0\\x+1=0\\x^2-2x+3=0\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+2=0\left(vl\right)\end{matrix}\right.\)

Vậy \(x\in \left\{-1,3\right\}\)

b) Để PT có $4$ nghiệm phân biết thì phương trình \(x^2-2x+2m+3=0\) phải có hai nghiệm phân biệt khác \(-1\)\(3\)

Tức là \(\left\{\begin{matrix} \Delta' =1-(2m+3)>0\\ 3^2-2.3+2m+3\neq 0\\ (-1)^2-2(-1)+2m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<-1\\ m\neq -3\\ \end{matrix}\right.\)

c) Áp dụng định lý Viet cho PT \(x^2-2x+2m+3=0\) có nghiệm thỏa mãn:\(\left\{\begin{matrix}x_3+x_4=2\\x_3x_4=2m+3\end{matrix}\right.\)

\(A=x_1x_2x_3x_4=-3x_3x_4=-3(2m+3)\)

Ta có với mọi \(x_3,x_4\in\mathbb{R}\) thì đều có \(x_3x_4\leq \left(\frac{x_3+x_4}{2}\right)^2=1\)

\(\Rightarrow -3x_3x_4\geq -3\) (khi nhân với số âm thì đổi dấu)

\(\Rightarrow A_{\min }=-3\Leftrightarrow m=-1\)

Câu b với c không liên quan đến nhau phải không? Nếu không thì không tìm được min đâu.

Bình luận (3)
H24
28 tháng 2 2017 lúc 15:56

sửa đề: pt \(\left(x^2-2x-3\right)\left(x^2-2x+2m+3\right)=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
K2
Xem chi tiết
LT
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
FS
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết