H24

cho pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a/ xác định m để pt có 2 nghiệm thỏa: 1<x1<x2<6

b/ tìm hệ thức độc lập với m của x1, x2

c/ tìm min của A = x23 - x13 với x1 < x2

AH
27 tháng 2 2017 lúc 1:43

Lời giải:

a) Để PT có hai nghiệm pb thì \(\Delta=(2m-3)^2-4(m^2-3m)>0\)

\(\Leftrightarrow 9>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )

Ta có PT tương đương \((x-m)(x-m+3)=0\)

\(\Rightarrow\left\{\begin{matrix}x_1=m-3\\x_2=m\end{matrix}\right.\). Để hai nghiệm thuộc khoảng \((1,6)\) thì :

\(1< m,m-3<6\Rightarrow 4< m<6\)

b) Từ phần a) suy ra hệ thức độc lập là \(x_1-x_2=-3\)

c) \(A=x_2^3-x_1^3=m^3-(m-3)^3=9m^2-27m+27=9(m-\frac{3}{2})^2+\frac{27}{4}\geq \frac{27}{4}\)

Do đó \(A_{\min}=\frac{27}{4}\Leftrightarrow m=\frac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
K2
Xem chi tiết
H24
Xem chi tiết
FS
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
TT
Xem chi tiết
CM
Xem chi tiết