b.
Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
Xét với \(m\ne\dfrac{5}{2}\):
\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)
Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)
Két hợp Viet với điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)
\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)
\(\Rightarrow32m^2-148m+161=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)
Câu b của em là 2 ý phân biệt đúng không?