H24

`(2m-5)x^2 -2(m-1)x+3=0`

a. Tìm m để pt có 1 nghiệm bằng 2 (cái này không cần làm ạ), tìm nghiệm còn lại

b. tìm m để pt có 2 nghiệm sao cho \(x_1-x_2=3\); nghiệm này bằng bình phương nghiệm kia

NL
16 tháng 1 2024 lúc 20:55

b.

Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)

Xét với \(m\ne\dfrac{5}{2}\):

\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)

Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)

Két hợp Viet với điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)

Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)

\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)

\(\Rightarrow32m^2-148m+161=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)

Bình luận (0)
NL
16 tháng 1 2024 lúc 20:20

Câu b của em là 2 ý phân biệt đúng không?

Bình luận (1)

Các câu hỏi tương tự
KA
Xem chi tiết
GF
Xem chi tiết
NK
Xem chi tiết
MB
Xem chi tiết
CP
Xem chi tiết
PP
Xem chi tiết
NH
Xem chi tiết
OP
Xem chi tiết
H24
Xem chi tiết