Bài 5: Phương trình chứa ẩn ở mẫu

GP

Cho pt ẩn x : \(\dfrac{x+a}{x+3}+\dfrac{x-3}{x-a}=2\)
a, Giải pt với a = -1
b, Giải pt với a = 2
c, Giải pt với a = 3
d, Tìm các giá trị của a biết phương trình nhận x=1 làm nghiệm
-Thank you-

AL
25 tháng 2 2019 lúc 12:23

a) Thay a = -1 vào phương trình

\(\dfrac{x-1}{x+3}+\dfrac{x-3}{x+1}=2\)

\(\Rightarrow\dfrac{x^2-1+x^2-9}{\left(x+3\right)\left(x+1\right)}=2\)

\(\Rightarrow2x^2-10=2\left(x+3\right)\left(x+1\right)=2x^2+8x+6\)

\(\Rightarrow2x^2+8x+6-2x^{10}+10=0\)

\(\Rightarrow8x+16=0\Rightarrow x=-2\)

b, c Làm tương tự như câu a

d)

Phương trình nhận x = 1 làm nghiệm

=> \(\dfrac{1+a}{1+3}+\dfrac{1-3}{1-a}=2\)

\(\Rightarrow\dfrac{a+1}{4}+\dfrac{2}{a-1}=2\)

\(\Rightarrow\dfrac{a^2-1+8}{4\left(a-1\right)}=2\)

\(\Rightarrow a^2+7=2\left(4a-1\right)=8a-2\)

\(\Rightarrow a^2-8x+9=0\)

\(\Rightarrow\left[{}\begin{matrix}a=4+\sqrt{7}\\a=4-\sqrt{7}\end{matrix}\right.\)

Bình luận (2)

Các câu hỏi tương tự
MP
Xem chi tiết
SK
Xem chi tiết
LP
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
SH
Xem chi tiết
XH
Xem chi tiết
ML
Xem chi tiết
NY
Xem chi tiết