Bài 5: Phương trình chứa ẩn ở mẫu

ML

Cho Pt \(\dfrac{x+a}{a-x}+\dfrac{x-a}{a+x}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

a) GPT với a = -3

b) Tìm a biết x=\(\dfrac{1}{2}\)

QD
10 tháng 2 2019 lúc 19:22

\(\dfrac{x+a}{a-x}+\dfrac{x-a}{a+x}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{\left(x+a\right)\left(a+x\right)}{\left(a-x\right)\left(a+x\right)}+\dfrac{\left(x-a\right)\left(a-x\right)}{\left(a+x\right)\left(a-x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{\left(x+a\right)\left(a+x\right)+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{xa+x^2+a^2+ax+xa-x^2-a^2+ax}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(\Rightarrow4ax=a\left(3a+1\right)\)

<=> 4ax-a(3a+1)=0

<=> 4ax-3a2-a=0

<=> a(4x-3a-1)=0 (*)

a) Thay a=-3 vào phương trình ta có :

\(\dfrac{x-3}{-3-x}+\dfrac{x-3}{-3+x}=\dfrac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

(*) <=> -3[4x-3.(-3)-1]=0

<=> -3(4x+8)=0

<=> (-3).4x+(-3).8=0

<=> -12x-24=0

<=> -12x=24

<=> x=-2

Vậy phương trình có nghiệm x=-2

b) Thay x=1/2 vào phương trình ta có :

(*) \(\Leftrightarrow a\left(4.\dfrac{1}{2}-3a-1\right)=0\)

\(\Leftrightarrow a\left(2-3a-1\right)=0\)

<=> a(1-3a)=0

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\1-3a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=\dfrac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;\dfrac{1}{3}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
XH
Xem chi tiết
MP
Xem chi tiết
SK
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
GP
Xem chi tiết
GP
Xem chi tiết
HM
Xem chi tiết