H24

cho phương trình \(x^4-2\left(m+1\right)x^2+m-2=0\) Tìm m để:

a) Phương trình đã cho có 4 nghiệm phân biệt.
b) Phương trình đã cho vô nghiệm.
c) Phương trình đã cho có đúng hai nghiệm.

NL
21 tháng 8 2021 lúc 12:20

Đặt \(x^2=t\) phương trình trở thành:

\(t^2-2\left(m+1\right)t+m-2=0\) (1)

a. Phương trình có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m-2\right)>0\\t_1+t_2=2\left(m+1\right)>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+3>0\left(\text{luôn đúng}\right)\\m>-1\\m>2\end{matrix}\right.\) 

\(\Rightarrow m>2\)

b. Do \(\Delta'=m^2+m+3>0;\forall m\) nên pt đã cho vô nghiệm khi (1) có 2 nghiệm pb đều âm

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=2\left(m+1\right)< 0\\t_1t_2=m-2>0\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

c. Pt có đúng 2 nghiệm khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow t_1t_2=m-2< 0\Rightarrow m< 2\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
CD
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết
LN
Xem chi tiết
MF
Xem chi tiết
NC
Xem chi tiết
CT
Xem chi tiết