Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LS

Cho phương trình : \(x^2+6x+6m-m^2\) ( với m là tham số ). Tìm m để phương trình thoả mãn : \(x^3_1-x_2^3+2x_1^2+12x_1+72=0\) với : \(x_1;x_2\) là nghiệm của phương trình trên .

Mong các anh chị hay các bạn giúp mình với.

NT
3 tháng 10 2023 lúc 16:30

\(x^2+6x+6m-m^2=0\left(1\right)\)

Áp dụng định lý Viet ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-6\\P=x_1.x_2=6m-m^2\end{matrix}\right.\)

\(\Delta'=9-6m+m^2=\left(m-3\right)^2\ge0,\forall m\in R\)

\(\Rightarrow\sqrt[]{\Delta'}=\left|m-3\right|\)

Phương trình \(\left(1\right)\) có 2 nhiệm phân biệt

\(\left[{}\begin{matrix}x_1=-3+\left|m-3\right|\\x_2=-3-\left|m-3\right|\end{matrix}\right.\)

\(\Rightarrow x_1-x_2=2\left|m-3\right|\)

Theo đề bài ta có :

\(x^3_1-x^3_2+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x^2_1+x^2_2+x_1.x_2\right)+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1.x_2\right]+2x^2_1+12x_1+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left(36-6m+m^2\right)+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left(9-6m+m^2+27\right)+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\)

\(\Leftrightarrow2\left|m-3\right|\left[\left(m-3\right)^2+27\right]+2\left[-3+\left|m-3\right|\right]^2+12\left[-3+\left|m-3\right|\right]+72=0\left(a\right)\)

- Với \(m>3\)

\(\left(a\right)\Leftrightarrow2\left(m-3\right)\left[\left(m-3\right)^2+27\right]+2\left[-3+m-3\right]^2+12\left[-3+m-3\right]+72=0\)

\(\Leftrightarrow2\left(m-3\right)\left[\left(m-3\right)^2+27\right]+2\left(m-6\right)^2+12\left(m-6\right)+72=0\)

Đặt \(t=m-3>0\)

\(pt\Leftrightarrow2t\left(t^2+27\right)+2\left(t-3\right)^2+12\left(t-3\right)+72=0\)

\(\Leftrightarrow2t^3+54t+2t^2-12t+18+12t-36+72=0\)

\(\Leftrightarrow2t^3+2t^2+54t+54=0\)

\(\Leftrightarrow2t^2\left(t+1\right)+54\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(2t^2+54\right)=0\)

\(\Leftrightarrow t+1=0\left(2t^2+54>0,\forall t\in R\right)\)

\(\Leftrightarrow t=-1\left(ktm\right)\)

- Với \(m< 3\)

\(\left(a\right)\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]+2\left[-3-m+3\right]^2+12\left[-3-m+3\right]+72=0\)

\(\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]+2m^2-12m+72=0\)

\(\Leftrightarrow2\left(3-m\right)\left[\left(3-m\right)^2+27\right]-2m\left(6-m\right)+72=0\)

Đặt \(t=3-m< 0\)

\(pt\Leftrightarrow2t\left(t^2+27\right)-2\left(3-t\right)\left(3+t\right)+72=0\)

\(\Leftrightarrow2t^3+54t-18+2t^2+72=0\)

\(\Leftrightarrow2t^3+2t^2+54t+54=0\)

\(\Leftrightarrow2t^2\left(t+1\right)+54\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(2t^2+54\right)=0\)

\(\Leftrightarrow t+1=0\left(2t^2+54>0,\forall t\in R\right)\)

\(\Leftrightarrow t=-1\)

\(\Leftrightarrow3-m=-1\)

\(\Leftrightarrow m=4\left(ktm\right)\)

- Với \(m=3\)

\(\left(a\right)\Leftrightarrow0+2.9-36+72=54=0\left(vô.lý\right)\)

\(\Rightarrow m=3\left(loại\right)\)

Vậy không có m nào để thỏa yêu cầu đề bài.

Bình luận (1)

Các câu hỏi tương tự
HL
Xem chi tiết
NA
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
GL
Xem chi tiết