LT

Cho phương trình: \(x^2\)– 5x + m = 0 (m là tham số).

a) Giải phương trình trên khi m = 6.

b) Tìm m để phương trình trên có hai nghiệm \(x_1,x_2\)thỏa mãn :\(\left|x_1-x_2\right|=3\)

NL
9 tháng 5 2021 lúc 9:32

a, - Thay m = 6 vào phương trình ta được : \(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy ...

b, - Xét phương trình trên có : \(\Delta=b^2-4ac=25-4m\)

- Để phương trình có 2 nghiệm phân biệt <=> \(m< \dfrac{25}{4}\)

- Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

- Ta có : \(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow x^2_1+x^2_2-2\left|x_1x_2\right|=\left(x_1+x_2\right)^2-2\left(x_1x_2+\left|x_1x_2\right|\right)=9\)

\(\Leftrightarrow m+\left|m\right|=8\)

\(\Leftrightarrow2m=8\)

\(\Leftrightarrow m=4\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết