NQ

Cho phương trình: \(x^2\) + (m-1)x - m2 - 2 = 0 ( x là ẩn, m là tham số). Tìm giá trị của m để phương trình có hai nghiệm trái dấu thỏa mãn 2/\(x_1\)/ - /\(x_2\)/ = 4 ( biết \(x_1\) < \(x_2\))

NL
28 tháng 2 2023 lúc 17:22

Ta có \(ac=-m^2-2< 0\) ; \(\forall m\) nên pt đã cho luôn có 2 nghiệm trái dấu

Mà \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)

\(\Rightarrow2\left|x_1\right|-\left|x_2\right|=4\Leftrightarrow-2x_1-x_2=4\)

Kết hợp với hệ thức Viet: \(x_1+x_2=-m+1\)

\(\Rightarrow\left\{{}\begin{matrix}-2x_1-x_2=4\\x_1+x_2=-m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x_1=-m+5\\x_1+x_2=-m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=m-5\\x_2=-2m+6\end{matrix}\right.\)

Thay vào \(x_1x_2=-m^2-2\)

\(\Rightarrow\left(m-5\right)\left(-2m+6\right)=-m^2-2\)

\(\Leftrightarrow m^2-16m+28=0\Rightarrow\left[{}\begin{matrix}m=2\\m=14\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
NA
Xem chi tiết
HL
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết