Ôn tập chương 2: Hàm số bậc nhất

MN

Cho parabol (P) :y=1/2x^2. Vẽ (P) trên mặt phẳnv tọa độ Oxy. Bằng pp đạu số, hãy tùm tọa độ các giao điểm A và B cà đường thẳng (d):y=-x+4. Tính diện tích tam giác AOB

H24
15 tháng 4 2021 lúc 16:46

Cho parabol (P) :y=1/2x^2. Vẽ (P) trên mặt phẳnv tọa độ Oxy. Bằng pp đạu số, hãy tùm tọa độ các giao điểm A và B cà đường thẳng (d):y=-x+4. Tính diện tích tam giác AOB

Ta có bảng giá trị :

\(x\)01-12-2
\(y=\dfrac{1}{2}x^2\)0\(\dfrac{1}{2}\)\(\dfrac{1}{2}\)22

-> \(O\left(0;0\right);C\left(1;\dfrac{1}{2}\right);D\left(-1;\dfrac{1}{2}\right);E\left(2;2\right);F\left(-2;2\right)\)

Đường cong đi qua các điểm O,C,D,E,F là đồ thị hàm số \(\left(P\right):y=\dfrac{1}{2}x^2\)


Xét phương trình hoành độ giao điểm chung của \(\left(P\right):y=\dfrac{1}{2}x^2\) và \(\left(d\right):y=-x+4\) là:\(\dfrac{1}{2}x^2=-x+4\\ \Leftrightarrow x^2+2x-8=0\\ \Leftrightarrow\left(x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)\(\rightarrow A\left(2;2\right);B\left(-4;8\right)\)Kẻ \(AX,BY\perp Ox\)\(\rightarrow X\left(2;0\right);Y\left(-4;0\right);AX=2;BY=8\Rightarrow XY=6;OX=2;OY=4\)\(S_{XYBA}=\dfrac{\left(BY+AX\right)\cdot XY}{2}=\dfrac{\left(8+2\right)\cdot6}{2}=30\) (đvdt)\(S_{BOY}=\dfrac{BY.OY}{2}=\dfrac{8\cdot4}{2}=16\) (đvdt); \(S_{AOX}=\dfrac{AO.OX}{2}=\dfrac{2\cdot2}{2}=2\)\(\Rightarrow S_{BOA}=S_{XYBA}-S_{BOY}-S_{AOX}=30-16-2=12\) (đvdt) 
Bình luận (0)
H24
15 tháng 4 2021 lúc 16:47

Cho parabol (P) :y=1/2x^2. Vẽ (P) trên mặt phẳnv tọa độ Oxy. Bằng pp đạu số, hãy tùm tọa độ các giao điểm A và B cà đường thẳng (d):y=-x+4. Tính diện tích tam giác AOB

Ta có bảng giá trị :

\(x\)01-12-2
\(y=\dfrac{1}{2}x^2\)0\(\dfrac{1}{2}\)\(\dfrac{1}{2}\)22

-> \(O\left(0;0\right);C\left(1;\dfrac{1}{2}\right);D\left(-1;\dfrac{1}{2}\right);E\left(2;2\right);F\left(-2;2\right)\)

Đường cong đi qua các điểm O,C,D,E,F là đồ thị hàm số \(\left(P\right):y=\dfrac{1}{2}x^2\)

​Xét phương trình hoành độ giao điểm chung của \(\left(P\right):y=\dfrac{1}{2}x^2\) và \(\left(d\right):y=-x+4\) là:\(\dfrac{1}{2}x^2=-x+4\\ \Leftrightarrow x^2+2x-8=0\\ \Leftrightarrow\left(x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)\(\rightarrow A\left(2;2\right);B\left(-4;8\right)\)Kẻ \(AX,BY\perp Ox\)\(\rightarrow X\left(2;0\right);Y\left(-4;0\right);AX=2;BY=8\Rightarrow XY=6;OX=2;OY=4\)\(S_{XYBA}=\dfrac{\left(BY+AX\right)\cdot XY}{2}=\dfrac{\left(8+2\right)\cdot6}{2}=30\) (đvdt)\(S_{BOY}=\dfrac{BY.OY}{2}=\dfrac{8\cdot4}{2}=16\) (đvdt); \(S_{AOX}=\dfrac{AO.OX}{2}=\dfrac{2\cdot2}{2}=2\)\(\Rightarrow S_{BOA}=S_{XYBA}-S_{BOY}-S_{AOX}=30-16-2=12\) (đvdt) 

undefined

Bình luận (1)

Các câu hỏi tương tự
TC
Xem chi tiết
LQ
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
JP
Xem chi tiết
MH
Xem chi tiết
SK
Xem chi tiết
TC
Xem chi tiết