H24

 Cho parabol (P): y = −𝑥^ 2 và đường thẳng (d): y = −mx + m −3. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B có hoành độ 𝑥1 , 𝑥2 thỏa mãn 𝑥1^ 2 + 𝑥2 ^2 = 17.

NL
7 tháng 7 2021 lúc 17:26

Phương trình hoành độ giao điểm:

\(x^2-mx+m-3=0\) (1)

Để d cắt (P) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-m+3>0\) (luôn đúng)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-3\end{matrix}\right.\)

\(x_1^2+x_2^2=17\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)

\(\Leftrightarrow m^2-2\left(m-3\right)=17\)

\(\Leftrightarrow m^2-2m-11=0\Rightarrow m=1\pm2\sqrt{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
VM
Xem chi tiết
AC
Xem chi tiết
NH
Xem chi tiết