H24

Cho parabol (P): y = 1/2𝑥^2 và đường thẳng (d): y = x − m + 3. 

Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ 𝑥1,𝑥2 sao cho 𝑥2 = 3𝑥1 .

NT
13 tháng 7 2021 lúc 13:24

Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=x-m+3\)

\(\Leftrightarrow\dfrac{1}{2}x^2-x+m-3=0\)

\(\Delta=\left(-1\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-3\right)\)

\(=1-2\left(m-3\right)\)

\(=1-2m+6\)

=-2m+7

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-2m+7>0\)

\(\Leftrightarrow-2m>-7\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{\dfrac{1}{2}}=2m-6\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_2=3x_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_1=2\\x_2=3x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}\\x_2=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Ta có: \(x_1x_2=2m-6\)

\(\Leftrightarrow2m-6=\dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)

\(\Leftrightarrow2m=\dfrac{27}{4}\)

hay \(m=\dfrac{27}{8}\)(loại)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
PL
Xem chi tiết
ND
Xem chi tiết
AC
Xem chi tiết
VM
Xem chi tiết
HN
Xem chi tiết
HH
Xem chi tiết
HQ
Xem chi tiết