Ta có:
\(P=\dfrac{1}{2}\) khi:
\(\dfrac{2}{x+\sqrt{x}+2}=\dfrac{1}{2}\)
\(\Rightarrow2\cdot2=1\cdot\left(x+\sqrt{x}+2\right)\)
\(\Leftrightarrow4=x+\sqrt{x}+2\)
\(\Leftrightarrow x+\sqrt{x}+2-4=0\)
\(\Leftrightarrow x+\sqrt{x}-2=0\)
\(\Leftrightarrow x+2\sqrt{x}-\sqrt{x}-2=0\)
\(\Leftrightarrow\left(x+2\sqrt{x}\right)-\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\)
Mà: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+2\ge2\forall x\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1^2\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy: \(x=1\)
P=1/2
=>\(\dfrac{2}{x+\sqrt{x}+2}=\dfrac{1}{2}\)
=>\(x+\sqrt{x}+2=4\)
=>\(x+\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\)
=>\(\sqrt{x}-1=0\)
=>x=1