N2

Cho (O) đường kính BC= 2R . Lấy A trên cung BC : góc ABO= 60 độ . Vẽ các tiếp tuyến tại A và tại C giao nhau tại M 
a) Tính AB và AC theo R 
b) C/m tam giác MAC là tam giác đều

NB
7 tháng 9 2023 lúc 16:58

Trước hết, chúng ta sẽ giải phần (a) để tính AB và AC theo R.

(a) Tính AB và AC theo R:

Ta có đường tròn (O) với đường kính BC = 2R. Đây là một hình tròn có bán kính R. Vì góc ABO = 60 độ, chúng ta biết rằng tam giác OAB là tam giác đều, nghĩa là OB = AB.

Vì OB = AB và O là tâm của đường tròn (O), nên ta có OA = R.

Bây giờ, chúng ta cần tính AC. Để làm điều này, chúng ta cần tìm AM, sau đó sử dụng AM và MC để tính AC.

AM là tiếp tuyến tại điểm A, và vì tam giác OAB là tam giác đều, nên góc BAO = 60 độ. Do đó, góc MAB cũng là 60 độ. Vì vậy, tam giác OAM cũng là tam giác đều.

Trong tam giác đều OAM, ta biết rằng OA = AM = R.

AC = AM + MC = R + R = 2R.

Tóm lại, AB = R và AC = 2R.

(b) Chứng minh tam giác MAC là tam giác đều:

Ta đã tính được AM = OA = R và AC = 2R ở phần (a). Đây là các cạnh của tam giác MAC.

Bây giờ, để chứng minh rằng tam giác MAC là tam giác đều, chúng ta cần xác minh rằng góc M = 60 độ.

Vì AM = OA và OC = 2R (vì OC là bán kính đường tròn), ta có:

AM = OA = R
OC = 2R

Chúng ta biết rằng tam giác OAC (tam giác vuông) có một góc tương đương với góc M trong tam giác MAC.

Góc OAC = 90 độ (góc vuông)
Góc OCA = 30 độ (vì tam giác OAC là tam giác 30-60-90)

Vì vậy, góc M trong tam giác MAC cũng là 30 độ.

Tổng góc của tam giác MAC:

Góc M + Góc A + Góc C = 30 độ + 60 độ + 90 độ = 180 độ

Vì tổng các góc trong tam giác bằng 180 độ, nên tam giác MAC là tam giác đều.

Vậy, chúng ta đã chứng minh rằng tam giác MAC là tam giác đều.

Bình luận (0)
NT
7 tháng 9 2023 lúc 17:17

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét ΔABC vuông tại A có cos ABC=AB/BC

=>AB/BC=1/2

=>AB=R

=>\(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

b: Xét (O) có

góc AOC là góc ở tâm 

góc ABC là góc nội tiếp chắn cung AC

=>góc AOC=2*góc ABC=120 độ

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC 

Xét tứ giác OAMC có góc OAM+góc OCM=180 độ

=>OAMC nội tiếp

=>góc AOC+góc AMC=180 độ

=>góc AMC=60 độ

Xét ΔAMC có MA=MC và góc AMC=60 độ

nên ΔMAC đều

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
CQ
Xem chi tiết
DS
Xem chi tiết
3P
Xem chi tiết
HL
Xem chi tiết
LA
Xem chi tiết
TV
Xem chi tiết
DT
Xem chi tiết
NU
Xem chi tiết