3P

Cho đường tròn (O;R) và điểm A nằm ngoài (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) ( B là tiếp điểm).

  a) Cm ∆ABO là tam giác vuông và tính độ dài AB theo R.

  b) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Cm AC là tiếp tuyến của (O).

  c) Cm ∆ABC đều.

NT
17 tháng 11 2023 lúc 19:07

a: BA là tiếp tuyến của (O) có B là tiếp điểm

=>OB\(\perp\)BA tại B

=>ΔOBA vuông tại B

ΔBOA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là tia phân giác của \(\widehat{BOC}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OCA}=\widehat{OBA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

Bình luận (0)

Các câu hỏi tương tự
BS
Xem chi tiết
NU
Xem chi tiết
MP
Xem chi tiết
DT
Xem chi tiết
MP
Xem chi tiết
DS
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết