KH

Cho nửa đường tròn tâm O đường kính AB = 2R . Điểm C cố định trên nửa đường tròn . Điểm M thuộc cung AC . Kẻ MH vuông góc với AB . Mb cắt CA tại E . Kẻ EI vuông góc với AB . Gọi K là giao điểm của AC và MH . CMR

a , tứ giác BHKC nội tiếp .

b , AK.AC = AM.AM , IE là phân giác của góc MIC

c , AE.AC + BE.BM không phụ thuộc vị trí điểm M 

NT
7 tháng 3 2021 lúc 19:24

a) Xét (O) có 

ΔCAB nội tiếp đường tròn(C,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔCAB vuông tại C(Định lí)

\(\widehat{ACB}=90^0\)

hay \(\widehat{KCB}=90^0\)

Xét tứ giác BHKC có

\(\widehat{BHK}\) và \(\widehat{KCB}\) là hai góc đối

\(\widehat{BHK}+\widehat{KCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)

Các câu hỏi tương tự
FF
Xem chi tiết
Xem chi tiết
NA
Xem chi tiết
NC
Xem chi tiết
LV
Xem chi tiết
KH
Xem chi tiết
AT
Xem chi tiết
BQ
Xem chi tiết
NC
Xem chi tiết