Ôn tập Đường tròn

EN

cho nửa đường tròn tâm O bán kính r đường kính BC. A nằm trên đường tròn, kẻ AH vuông góc với BC gọi I và K lần lượt là điểm đối xứng của H qua AB và AC. đường thẳng IK và tia CA cắt tiếp tuyến kẻ từ B của đường tròn lần lượt tại M và N .gọi e là giao của IH và AB gọi F là giao KH và AC a) chứng minh I,A,K thẳng hàng và IK là tiếp tuyến của (O) b)chưngs minh: 1/BH bình= 1/AB bình +1/AN bình *Vẽ giúp em hình nx ạ em cảm ơn

NT
17 tháng 1 2023 lúc 13:57

a: H và I đối xứng nhau qua AB

nên AB vuông góc với HI tại trung điểm của HI

=>AB là phân giác của góc IAH(1)

H đối xứng K qua AC

nên AC vuông góc HK tại trung điểm của HK

=>AC là phân giác của góc HAK(2)

Từ (1), (2) suy ra góc IAK=2*90=180 độ

=>I,A,K thẳng hàng

b: 1/BH^2-1/AN^2=1/AB^2

=>(AN^2-BH^2)/(AN^2*BH^2)=1/AB^2

CA/AN=CH/HB

=>AN/CA=HB/HC=k

=>AN=k*CA; HB=k*HC

\(\dfrac{AN^2-BH^2}{AN^2\cdot BH^2}=\dfrac{k^2\cdot CA^2-k^2\cdot HC^2}{k^2\cdot CA\cdot HC}=\dfrac{CA^2-HC^2}{CA\cdot HC}=\dfrac{AH^2}{AC\cdot HC}=\dfrac{HB}{AC}\)

\(\dfrac{1}{AB^2}=\dfrac{HB}{AC}\Leftrightarrow AB^2\cdot HB=AC\)

=>\(BH^2\cdot HC=AC\Leftrightarrow BH^2=\dfrac{AC}{HC}\)(vô lý)

=>Đề câu b sai nha bạn

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
HN
Xem chi tiết
LB
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết