Bài 1: Phương trình bậc nhất hai ẩn

DT

Cho mặt phẳng Oxy :(P) y=2x2 và y=mx+1

Tìm m để SAOB =\(\dfrac{3m}{2}\)

(biết d cắt P tại 2 điểm phân biệt A và B) 

Giúp mk cần gấp 

 

LH
28 tháng 5 2021 lúc 16:53

Xét pt hoành độ gđ của (P) và (d):

\(2x^2=mx+1\)

\(\Leftrightarrow2x^2-mx-1=0\)  (1)

Có ac=2.(-1)=-2 => Pt (1) luôn có hai nghiệm pb trái dấu => (d) luôn cắt (P) tại hai điểm nằm khác phía nhau so với trục tung.

Giả sử \(A\left(x_1;2x^2_1\right);B\left(x_2;2x^2_2\right)\) là hai gđ của (d) và (P) với x1;x2 là hai nghiệm của pt (1)

Giả sử x1<0<x2

Gọi A' ; B' là hình chiếu của A và B lên trục Ox

=>\(AA'=2x^2_1;BB'=2x^2_2\)

\(OA'=\left|x_1\right|=-x_1\) ; \(OB'=\left|x_2\right|=x_2\)

Có \(S_{OAB}=S_{A'ABB'}-S_{OAA'}-S_{OBB'}\)

\(\Leftrightarrow\dfrac{3m}{2}=\dfrac{1}{2}.A'B'\left(AA'+BB'\right)-\dfrac{1}{2}.OA'.AA'-\dfrac{1}{2}.OB'.BB'\)

\(\Leftrightarrow3m=\left(-x_1+x_2\right)\left(2x^2_1+2x^2_2\right)+x_1.2x^2_1-x_2.2x^2_2\)

\(\Leftrightarrow3m=-2x_1^3-2x_1.x_2^2+2x_1^2.x_2+2x_2^3+2x_1^3-2x_2^3\)

\(\Leftrightarrow3m=2x_1x_2\left(x_1-x_2\right)\)

\(\Leftrightarrow3m=2.\left(-\dfrac{1}{2}\right).-\sqrt{\left(x_1-x_2\right)^2}\) (do x1<x2 =>x1-x2<0)

\(\Leftrightarrow3m=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\sqrt{\left(\dfrac{m}{2}\right)^2-4.\left(-\dfrac{1}{2}\right)}\)\(=\sqrt{\dfrac{m^2}{4}+2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\9m^2=\dfrac{m^2}{4}+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2=\dfrac{8}{35}\end{matrix}\right.\)\(\Rightarrow m=\dfrac{2\sqrt{70}}{35}\)

Vậy...

(Bạn kiểm tra lại xem, có thể mk sẽ tính nhầm nhưng dạng làm vẫn như thế)

Bình luận (1)

Các câu hỏi tương tự
DT
Xem chi tiết
OO
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
PM
Xem chi tiết
HT
Xem chi tiết
XH
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết