H24

cho m nằm ngoài đường tròn tâm o bán kính r , vẽ các tiếp tuyến ma , mb với đường tròn , om cắt ab tại h , vẽ đường kính bc , đường thẳng vuông góc với bc tại c cắt tia ma tại f, chứng minh bm.cf=r2

NT
28 tháng 1 2024 lúc 20:40

Xét (O) có

OC là bán kính

FC\(\perp\)CO tại C

Do đó: FC là tiếp tuyến của (O)

Xét (O) có

FC,FA là các tiếp tuyến

Do đó: FC=FA và OF là phân giác của góc AOC

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB và OM là phân giác của góc AOB

Ta có: OF là phân giác của góc AOC

=>\(\widehat{AOC}=2\cdot\widehat{AOF}\)

Ta có: OM là phân giác của góc AOB

=>\(\widehat{AOB}=2\cdot\widehat{AOM}\)

Ta có: \(\widehat{AOB}+\widehat{AOC}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{AOF}+\widehat{AOM}\right)=180^0\)

=>\(2\cdot\widehat{FOM}=180^0\)

=>\(\widehat{FOM}=90^0\)

Xét ΔFOM vuông tại O có OA là đường cao

nên \(AF\cdot AM=OA^2\)

mà AF=CF và BM=MA

nên \(CF\cdot MB=OA^2=R^2\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
VT
Xem chi tiết
NV
Xem chi tiết
HN
Xem chi tiết
AN
Xem chi tiết
MH
Xem chi tiết
HQ
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết